Subgroup ($H$) information
| Description: | $C_2\times C_{40}$ |
| Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
| Index: | \(242\)\(\medspace = 2 \cdot 11^{2} \) |
| Exponent: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Generators: |
$b, a^{2}c^{6}d^{8}, b^{2}, d^{11}, d^{22}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{11}^2:(C_{10}\times \SD_{16})$ |
| Order: | \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \) |
| Exponent: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{11}^2.C_2^3.C_5.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $121$ |
| Möbius function | $1$ |
| Projective image | $C_2\times D_{11}^2:C_{10}$ |