Subgroup ($H$) information
| Description: | $C_{11}^3.\SL(2,11)$ |
| Order: | \(1756920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{4} \) |
| Index: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Exponent: | \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \) |
| Generators: |
$\left(\begin{array}{rr}
120 & 0 \\
0 & 120
\end{array}\right), \left(\begin{array}{rr}
78 & 104 \\
103 & 21
\end{array}\right), \left(\begin{array}{rr}
12 & 0 \\
33 & 111
\end{array}\right), \left(\begin{array}{rr}
89 & 88 \\
99 & 34
\end{array}\right), \left(\begin{array}{rr}
89 & 114 \\
63 & 44
\end{array}\right), \left(\begin{array}{rr}
67 & 0 \\
22 & 56
\end{array}\right)$
|
| Derived length: | $0$ |
The subgroup is characteristic (hence normal), nonabelian, and perfect (hence nonsolvable). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
| Description: | $C_{11}^4.\GL(2,11)$ |
| Order: | \(193261200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{5} \) |
| Exponent: | \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_{110}$ |
| Order: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Outer Automorphisms: | $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(140553600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{4} \) |
| $\operatorname{Aut}(H)$ | $C_{11}^3.\PSL(2,11).C_2$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |