Properties

Label 193261200.a.110._.A
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 11^{4} $
Index $ 2 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3.\SL(2,11)$
Order: \(1756920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{4} \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 78 & 104 \\ 103 & 21 \end{array}\right), \left(\begin{array}{rr} 12 & 0 \\ 33 & 111 \end{array}\right), \left(\begin{array}{rr} 89 & 88 \\ 99 & 34 \end{array}\right), \left(\begin{array}{rr} 89 & 114 \\ 63 & 44 \end{array}\right), \left(\begin{array}{rr} 67 & 0 \\ 22 & 56 \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is characteristic (hence normal), nonabelian, and perfect (hence nonsolvable). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^4.\GL(2,11)$
Order: \(193261200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{5} \)
Exponent: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_{110}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(140553600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $C_{11}^3.\PSL(2,11).C_2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed