Properties

Label 193261200.a
Order \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{5} \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 5 \cdot 11 \)
$\card{Z(G)}$ 110
$\card{\Aut(G)}$ \( 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 5 \)
Perm deg. not computed
Trans deg. $13200$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 172 | (1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155), (1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167), (1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172), (1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151), (1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155) >;
 
Copy content gap:G := Group( (1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155), (1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167), (1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172), (1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151), (1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155) );
 
Copy content sage:G = PermutationGroup(['(1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155)', '(1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167)', '(1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172)', '(1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151)', '(1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155)'])
 

Group information

Description:$C_{11}^4.\GL(2,11)$
Order: \(193261200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{5} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(140553600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_5$, $C_{11}$ x 4, $\PSL(2,11)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 11 12 15 20 22 24 30 33 40 44 55 60 66 88 110 120 121 132 165 220 242 264 330 440 605 660 1210 1320
Elements 1 15973 13310 13310 159724 13310 26620 543052 14640 26620 53240 53240 1931280 53240 53240 1597200 106480 1597200 19224960 106480 1597200 3194400 65224320 212960 1756920 3194400 6388800 6388800 1756920 6388800 6388800 12777600 7027680 12777600 7027680 25555200 193261200
Conjugacy classes   1 2 1 1 14 1 2 38 131 2 4 4 251 4 4 120 8 120 1724 8 120 240 4604 16 121 240 480 480 121 480 480 960 484 960 484 1920 14630
Divisions 1 2 1 1 4 1 1 10 15 1 1 1 27 1 1 7 1 7 46 1 7 7 118 1 14 7 7 7 14 7 7 7 14 7 14 7 375

Minimal presentations

Permutation degree:not computed
Transitive degree:$13200$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $172$ $\langle(1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 172 | (1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155), (1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167), (1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172), (1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151), (1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155) >;
 
Copy content gap:G := Group( (1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155), (1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167), (1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172), (1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151), (1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155) );
 
Copy content sage:G = PermutationGroup(['(1,6)(2,14)(3,20)(4,27)(5,34)(7,28)(8,50)(9,40)(10,41)(11,36)(12,63)(13,66)(15,72)(16,73)(17,84)(18,61)(19,90)(21,79)(22,32)(23,37)(24,97)(25,104)(26,65)(29,88)(30,58)(31,117)(33,123)(35,49)(38,54)(39,64)(42,57)(43,105)(44,80)(45,111)(46,112)(47,55)(48,51)(52,102)(53,122)(56,119)(59,124)(60,103)(62,114)(67,101)(68,98)(69,108)(70,95)(71,87)(74,78)(75,94)(76,82)(77,113)(81,125)(83,91)(85,115)(86,126)(89,132)(92,110)(93,106)(96,121)(100,131)(107,127)(109,128)(116,130)(118,129)(133,137)(134,140)(135,142)(136,146)(138,148)(139,144)(141,152)(145,154)(147,149)(151,156)(153,155)', '(1,4,25,87,115,75,64,113,73,49,9)(2,12,23,34,65,126,84,76,74,53,15)(3,18,24,102,103,36,124,110,131,54,21)(5,26,86,17,82,78,122,72,14,63,37)(6,27,104,71,85,94,39,77,16,35,40)(8,48,10,30,107,89,119,106,90,29,44)(11,59,92,100,38,79,20,61,97,52,60)(13,62,101,123,95,42,91,128,96,22,68)(19,88,80,50,51,41,58,127,132,56,93)(32,98,66,114,67,33,70,57,83,109,121)(157,158,159,160,161,162,163,164,165,166,167)', '(1,5,33,11,10)(2,13,24,80,16)(3,19,39,53,22)(4,26,70,59,30)(6,34,123,36,41)(7,43,116,55,46)(8,49,63,114,52)(9,37,67,60,48)(12,62,102,50,35)(14,66,97,44,73)(15,68,18,88,77)(17,83,100,89,87)(20,90,64,122,32)(21,93,94,74,96)(23,101,103,51,40)(25,86,57,92,107)(27,65,95,124,58)(28,105,130,47,112)(29,113,72,98,61)(31,81,45,69,118)(38,119,115,82,109)(42,110,127,104,126)(54,56,85,76,128)(71,84,91,131,132)(75,78,121,79,106)(108,129,117,125,111)(133,136,145,138,147)(134,139,135,141,151)(137,146,154,148,149)(140,144,142,152,156)(168,169,170,171,172)', '(1,2,11,27,72,129,121,95,56,10,55,49,76,79,16,78,111,66,91,19,89,116,113,34,60,85,17,81,33,96,80,90,130,75,15,38,6,26,108,83,68,51,8,47,87,84,52,77,37,120,32,62,58,30,28,4,23,100,71,14,69,114,123,132,119,43,9,53,97,40,122,125,70,42,93,29,112,73,126,92,39,82,45,109,128,88,48,99,64,12,61,104,86,118,98,22,50,107,46,115,74,59,35,5,31,67,13,41,106,105,25,65,20,94,63,117,57,101,127,44,7)(133,134,138,137,136,143,144,139,149,152,153)(140,150,145,154,141,147,155,156,146,142,151)', '(1,3,17,33,8)(4,24,82,114,29)(5,32,119,73,36)(6,35,27,104,39)(7,42,92,19,45)(9,54,86,57,10)(11,58,118,55,13)(12,34,53,126,65)(14,70,48,75,21)(15,74,23,84,76)(18,63,67,44,64)(20,93,69,46,95)(22,97,51,120,99)(25,103,78,98,106)(26,109,107,49,110)(28,101,100,132,111)(30,115,131,72,83)(31,116,91,52,88)(37,66,90,113,102)(38,41,125,105,68)(40,94,77,85,71)(43,96,59,50,81)(47,128,79,80,129)(56,108,112,123,60)(61,127,117,130,62)(87,124,122,121,89)(133,135,140,145,152)(136,144,147,156,148)(138,141,143,153,154)(139,142,149,150,155)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 120 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 56 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 87 & 35 \\ 86 & 36 \end{array}\right), \left(\begin{array}{rr} 36 & 120 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/121\Z)$
Copy content comment:Define the group as a matrix group with coefficients in GLZq
 
Copy content magma:G := MatrixGroup< 2, Integers(121) | [[120, 0, 0, 1], [56, 0, 0, 1], [81, 0, 0, 1], [87, 35, 86, 36], [36, 120, 1, 0]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(120,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(1,121)]],[[ZmodnZObj(56,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(1,121)]],[[ZmodnZObj(81,121), ZmodnZObj(0,121)], [ZmodnZObj(0,121), ZmodnZObj(1,121)]],[[ZmodnZObj(87,121), ZmodnZObj(35,121)], [ZmodnZObj(86,121), ZmodnZObj(36,121)]],[[ZmodnZObj(36,121), ZmodnZObj(120,121)], [ZmodnZObj(1,121), ZmodnZObj(0,121)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(121), 2, 2) G = MatrixGroup([MS([[120, 0], [0, 1]]), MS([[56, 0], [0, 1]]), MS([[81, 0], [0, 1]]), MS([[87, 35], [86, 36]]), MS([[36, 120], [1, 0]])])
 
Direct product: $C_5$ $\, \times\, $ $C_{11}$ $\, \times\, $ $((C_{11}^2\times C_{22}).\PGL(2,11))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_{11}^4$ . $\GL(2,11)$ $(C_{11}^4.\SL(2,11))$ . $C_{10}$ $(C_{11}^3.\GL(2,11))$ . $C_{11}$ $C_{11}$ . $(C_{11}^3.\GL(2,11))$ all 22
Aut. group: $\Aut(C_{121}^2)$ $\Aut(C_{121}\times C_{242})$

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{121}\Z)$.

Homology

Abelianization: $C_{110} \simeq C_{2} \times C_{5} \times C_{11}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{110}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{11}^3.\SL(2,11)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_{11}^2\times C_{22}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^4.C_{11}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $14630 \times 14630$ character table is not available for this group.

Rational character table

The $375 \times 375$ rational character table is not available for this group.