Properties

Label 1920.240562.5.a1.a1
Order $ 2^{7} \cdot 3 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.\GL(2,\mathbb{Z}/4)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(5\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(6,8)(7,11)(9,12)(10,13), (3,5,4)(6,8)(9,10)(12,13)(14,15), (7,11)(9,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2\times A_5:\SD_{16}$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5:D_6$, of order \(15360\)\(\medspace = 2^{10} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $A_4.C_2^5.C_2^3$
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4.\GL(2,\mathbb{Z}/4)$
Normal closure:$C_2\times A_5:\SD_{16}$
Core:$C_2\times D_4$
Minimal over-subgroups:$C_2\times A_5:\SD_{16}$
Maximal under-subgroups:$C_2^5:C_6$$C_2^4.D_6$$C_2\times A_4:C_8$$A_4:\SD_{16}$$A_4:\SD_{16}$$A_4:\SD_{16}$$A_4:\SD_{16}$$C_2^3:\SD_{16}$$C_6:\SD_{16}$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function not computed
Projective image not computed