Properties

Label 192.81.3.a1.a1
Order $ 2^{6} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{64}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(3\)
Exponent: \(32\)\(\medspace = 2^{5} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $5$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3:Q_{64}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_{16}:C_8$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $D_{32}:C_8$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$D_{16}:C_8$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{16}$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_{64}$
Normal closure:$C_3:Q_{64}$
Core:$Q_{32}$
Minimal over-subgroups:$C_3:Q_{64}$
Maximal under-subgroups:$Q_{32}$$Q_{32}$$C_{32}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:D_{16}$