Properties

Label 192.120.3.a1.a1
Order $ 2^{6} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{32}:C_2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(3\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{24}.D_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times D_4\times D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_8$
Normalizer:$\OD_{32}:C_2$
Normal closure:$C_{24}.D_4$
Core:$\OD_{16}:C_2$
Minimal over-subgroups:$C_{24}.D_4$
Maximal under-subgroups:$\OD_{16}:C_2$$C_2\times C_{16}$$\OD_{32}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:D_4$