Properties

Label 191102976.y.4096._.A
Order $ 2^{6} \cdot 3^{6} $
Index $ 2^{12} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.S_3^2$
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Index: \(4096\)\(\medspace = 2^{12} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(19,20)(21,22)(23,24)(25,29,27,26,30,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(C_6^4.S_3^2)$
Order: \(191102976\)\(\medspace = 2^{18} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.C_6^2.C_6^2.C_3^2.C_2^3$
$\operatorname{Aut}(H)$ $(C_2\times C_6^3).C_3^4.C_2^3$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.S_3^2$
Normal closure:$C_2^{12}.(C_6^4.S_3^2)$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4096$
Möbius function not computed
Projective image not computed