Properties

Label 190080.d.72.c1.a1
Order $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \PSL(2,11)$
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\langle(12,15)(13,14), (1,10,3)(2,9,6)(5,11,8)(12,13)(14,15), (2,10)(4,5)(6,7)(9,11)(12,14)(13,15), (12,13)(14,15)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $S_4\times M_{11}$
Order: \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times M_{11}$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$W$$S_3\times \PSL(2,11)$, of order \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_4\times \PSL(2,11)$
Normal closure:$C_2^2\times M_{11}$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times M_{11}$$A_4\times \PSL(2,11)$$D_4\times \PSL(2,11)$
Maximal under-subgroups:$C_2\times \PSL(2,11)$$C_2^2\times A_5$$C_2^2\times A_5$$C_{22}:C_{10}$$C_2^2\times D_6$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$-3$
Projective image$S_4\times M_{11}$