Properties

Label 190080.d.3960.z1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(12,15)(13,14), (2,11)(3,8)(4,5)(9,10), (2,10)(4,5)(6,7)(9,11)(12,14)(13,15), (12,13)(14,15), (1,6,7)(2,10,8)(3,11,9)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_4\times M_{11}$
Order: \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times M_{11}$, of order \(190080\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $S_3\times C_2^3:\GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_6\times S_4$
Normal closure:$C_2^2\times M_{11}$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times \PSL(2,11)$$C_2^2\times S_5$$C_2^2\times \GL(2,3)$$A_4\times D_6$$D_6^2$$D_4\times D_6$
Maximal under-subgroups:$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2^2\times C_6$$C_2\times D_6$$C_2\times D_6$$C_2^4$

Other information

Number of subgroups in this conjugacy class$660$
Möbius function$9$
Projective image$S_4\times M_{11}$