Properties

Label 18966528.c.37044.A
Order $ 2^{9} $
Index $ 2^{2} \cdot 3^{3} \cdot 7^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9$
Order: \(512\)\(\medspace = 2^{9} \)
Index: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(2\)
Generators: $\langle(4,6)(5,24)(7,22)(8,20), (4,20)(5,22)(6,8)(7,24), (2,23)(3,17)(9,11)(14,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3^2:D_6$
Order: \(18966528\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_7^3:C_3^2:D_6$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Automorphism Group: $C_2\times C_7^3.\He_3.Q_8.C_6$
Outer Automorphisms: $C_2\times \SL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}.C_7^3:C_3\wr S_3$, of order \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $\GL(9,2)$
$W$$C_7^3:C_3^2:S_3$, of order \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2^{10}$
Normalizer:$C_2^9.C_7^3:C_3^2:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3^2:D_6$