Properties

Label 1866240.i.20.I
Order $ 2^{7} \cdot 3^{6} $
Index $ 2^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^4.S_3^2$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,12,18)(3,14,16), (1,7)(2,8,5,4,9,13)(3,10,16,15,14,6)(11,18)(12,17)(19,25,28,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^5.C_2.S_5$
Order: \(1866240\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 5 \)
Exponent: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^5.C_2^2.S_5$
$\operatorname{Aut}(H)$ $C_2^8.D_5^2.C_2^3$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
$W$$C_6^4:(C_2\times D_6)$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.D_6^2$
Normal closure:$C_6^5.S_5$
Core:$C_6^5$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed