Properties

Label 1860.48.372.a1.a1
Order $ 5 $
Index $ 2^{2} \cdot 3 \cdot 31 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(372\)\(\medspace = 2^{2} \cdot 3 \cdot 31 \)
Exponent: \(5\)
Generators: $b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{155}:A_4$
Order: \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Exponent: \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{31}:A_4$
Order: \(372\)\(\medspace = 2^{2} \cdot 3 \cdot 31 \)
Exponent: \(186\)\(\medspace = 2 \cdot 3 \cdot 31 \)
Automorphism Group: $C_{31}:(C_{30}\times A_4)$
Outer Automorphisms: $C_{30}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{31}.(C_{30}\times A_4).C_2^2$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(11160\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 31 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{155}:A_4$
Normalizer:$C_{155}:A_4$
Complements:$C_{31}:A_4$
Minimal over-subgroups:$C_{155}$$C_{15}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-124$
Projective image$C_{31}:A_4$