Subgroup ($H$) information
Description: | $C_1$ |
Order: | $1$ |
Index: | \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
Exponent: | $1$ |
Generators: | |
Nilpotency class: | $0$ |
Derived length: | $0$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.
Ambient group ($G$) information
Description: | $C_{155}:A_4$ |
Order: | \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
Exponent: | \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_{155}:A_4$ |
Order: | \(1860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
Exponent: | \(930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 31 \) |
Automorphism Group: | $C_{31}.(C_{30}\times A_4).C_2^2$ |
Outer Automorphisms: | $C_2\times C_{60}$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{31}.(C_{30}\times A_4).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{155}:A_4$ | |||
Normalizer: | $C_{155}:A_4$ | |||
Complements: | $C_{155}:A_4$ | |||
Minimal over-subgroups: | $C_{31}$ | $C_5$ | $C_3$ | $C_2$ |
Other information
Möbius function | $124$ |
Projective image | $C_{155}:A_4$ |