Properties

Label 18522.q.189.a1
Order $ 2 \cdot 7^{2} $
Index $ 3^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(189\)\(\medspace = 3^{3} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $acde^{2}f, f, d^{3}e^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_7^3:C_3^2:S_3$
Order: \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.\He_3.Q_8.C_6$
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_7\times C_{14}$
Normalizer:$C_7^2:C_6$
Normal closure:$C_7^3:C_3^2:S_3$
Core:$C_1$
Minimal over-subgroups:$D_7\times C_7^2$$C_7^2:C_6$
Maximal under-subgroups:$C_7^2$$C_{14}$$C_{14}$

Other information

Number of subgroups in this autjugacy class$63$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_7^3:C_3^2:S_3$