Subgroup ($H$) information
Description: | $C_7\times C_{14}$ |
Order: | \(98\)\(\medspace = 2 \cdot 7^{2} \) |
Index: | \(189\)\(\medspace = 3^{3} \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$acde^{2}f, f, d^{3}e^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_7^3:C_3^2:S_3$ |
Order: | \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.\He_3.Q_8.C_6$ |
$\operatorname{Aut}(H)$ | $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$W$ | $C_3$, of order \(3\) |
Related subgroups
Centralizer: | $C_7\times C_{14}$ | ||
Normalizer: | $C_7^2:C_6$ | ||
Normal closure: | $C_7^3:C_3^2:S_3$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $D_7\times C_7^2$ | $C_7^2:C_6$ | |
Maximal under-subgroups: | $C_7^2$ | $C_{14}$ | $C_{14}$ |
Other information
Number of subgroups in this autjugacy class | $63$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_7^3:C_3^2:S_3$ |