Properties

Label 184900.b.860.d1
Order $ 5 \cdot 43 $
Index $ 2^{2} \cdot 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Index: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Generators: $b^{86}, b^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{215}:C_{860}$
Order: \(184900\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43^{2} \)
Exponent: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{860}$
Order: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Exponent: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Automorphism Group: $C_2^2\times C_{84}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^2\times C_{84}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{215}.C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{215}\times C_{430}$
Normalizer:$C_{215}:C_{860}$
Complements:$C_{860}$
Minimal over-subgroups:$C_{43}\times C_{215}$$C_5\times C_{215}$$C_{430}$
Maximal under-subgroups:$C_{43}$$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{215}:C_{860}$