Properties

Label 184900.b.4300.b1
Order $ 43 $
Index $ 2^{2} \cdot 5^{2} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}$
Order: \(43\)
Index: \(4300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43 \)
Exponent: \(43\)
Generators: $b^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{215}:C_{860}$
Order: \(184900\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43^{2} \)
Exponent: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_5:C_{860}$
Order: \(4300\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 43 \)
Exponent: \(860\)\(\medspace = 2^{2} \cdot 5 \cdot 43 \)
Automorphism Group: $C_2^2\times C_{84}\times F_5$
Outer Automorphisms: $C_2^3\times C_{84}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{215}.C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{215}\times C_{430}$
Normalizer:$C_{215}:C_{860}$
Complements:$C_5:C_{860}$
Minimal over-subgroups:$C_{43}^2$$C_{215}$$C_{215}$$C_{215}$$C_{86}$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{215}:C_{860}$