Subgroup ($H$) information
Description: | $A_6$ |
Order: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
Index: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(8,9)(10,11), (8,13)(9,11,10,12)\rangle$
|
Derived length: | $0$ |
The subgroup is characteristic (hence normal), nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple). Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $A_6\times S_7$ |
Order: | \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $S_7$ |
Order: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Automorphism Group: | $S_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is nonabelian, almost simple, nonsolvable, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $A_6.A_7.C_2^3$ |
$\operatorname{Aut}(H)$ | $S_6:C_2$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |