Properties

Label 1814400.a.5040.a1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_5$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,3,6), (2,3)(4,7)(5,8)(9,10), (2,3)(4,9,10,8,7,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $A_{10}$
Order: \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times S_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$C_3:S_5$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3:S_5$
Normal closure:$A_{10}$
Core:$C_1$
Minimal over-subgroups:$C_3:S_6$$A_4:S_5$
Maximal under-subgroups:$\GL(2,4)$$S_5$$C_3:S_4$$C_{15}:C_4$$S_3^2$

Other information

Number of subgroups in this conjugacy class$5040$
Möbius function$0$
Projective image$A_{10}$