Properties

Label 1814400.a.302400.d1.a1
Order $ 2 \cdot 3 $
Index $ 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(302400\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,8)(6,7), (2,6,7)(3,8,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $A_{10}$
Order: \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$S_4$
Normalizer:$S_3\times S_4$
Normal closure:$A_{10}$
Core:$C_1$
Minimal over-subgroups:$A_5$$S_4$$S_4$$S_4$$C_3\times S_3$$C_3:S_3$$D_6$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this conjugacy class$12600$
Möbius function$24$
Projective image$A_{10}$