Properties

Label 1814400.a.100800.d1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(100800\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,5,8), (3,7,6), (5,8)(6,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $A_{10}$
Order: \(1814400\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_{10}$, of order \(3628800\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$A_4$
Normalizer:$C_6^2:D_{12}$
Normal closure:$A_{10}$
Core:$C_1$
Minimal over-subgroups:$C_3:S_4$$C_3^2:C_6$$S_3^2$$C_3^2:C_4$$C_3^2:C_4$$C_6:S_3$$S_3^2$
Maximal under-subgroups:$C_3^2$$S_3$$S_3$

Other information

Number of subgroups in this conjugacy class$2100$
Möbius function$-96$
Projective image$A_{10}$