Subgroup ($H$) information
| Description: | $C_6^2:D_6$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(8,16,11)(9,15,13)(10,12,14), (8,12,9)(10,13,11)(14,15,16), (4,5)(6,7)(8,13,9,10,12,11) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^2:D_6\times \GL(3,2)$ |
| Order: | \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times \SO(3,7)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $C_6^2:(D_4\times \GL(2,3))$, of order \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \) |
| $W$ | $C_6:D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $42$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $C_3:S_3\times \GL(3,2)$ |