Properties

Label 18144.f.14.b1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times \He_3:S_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,7,4)(3,5,6)(8,11,16)(9,13,15)(10,14,12), (8,16,11)(9,15,13)(10,12,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^2:D_6\times \GL(3,2)$
Order: \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \SO(3,7)\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $C_6^2:(D_6\times \GL(2,3))$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^2:D_6\times S_4$
Normal closure:$C_3^2:D_6\times \GL(3,2)$
Core:$C_2\times \He_3$
Minimal over-subgroups:$C_3^2:D_6\times S_4$
Maximal under-subgroups:$C_2\times A_4\times \He_3$$\He_3:S_4$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$$C_3^3:D_6$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3:S_3\times \GL(3,2)$