Properties

Label 18000.o.12.l1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:D_6$
Order: \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,14,5,11,7)(4,12,15,10,8), (1,3)(5,11)(6,9)(7,14)(8,12)(10,15)(17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_5^3:(S_3\times S_4)$
Order: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_5^3:(S_3\times C_4^2)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_5^3:D_6$, of order \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3:D_6$
Normal closure:$C_5^3:(S_3\times S_4)$
Core:$C_5^3$
Minimal over-subgroups:$D_5\wr S_3$$C_5^3:S_3^2$
Maximal under-subgroups:$C_5\wr S_3$$C_5^2:D_{15}$$C_5^3:C_6$$C_5:D_5^2$$C_5^2:D_6$$S_3\times D_5$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$1$
Projective image$C_5^3:(S_3\times S_4)$