Subgroup ($H$) information
| Description: | $C_3\times C_{12}$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Index: | \(50\)\(\medspace = 2 \cdot 5^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a^{2}, d^{10}, b, a^{4}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $(C_5\times C_{60}).S_3$ |
| Order: | \(1800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times C_5^2:(C_2\times C_4\times S_3)$ |
| $\operatorname{Aut}(H)$ | $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $25$ |
| Möbius function | $1$ |
| Projective image | $C_5^2:S_3$ |