Properties

Label 180.17.15.a1.b1
Order $ 2^{2} \cdot 3 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, a^{2}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_6.D_{15}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{30}:C_{12}:\GL(2,3)$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3:C_4$
Normal closure:$C_6.D_{15}$
Core:$C_6$
Minimal over-subgroups:$C_{15}:C_4$$C_3^2:C_4$
Maximal under-subgroups:$C_6$$C_4$
Autjugate subgroups:180.17.15.a1.a1180.17.15.a1.c1180.17.15.a1.d1

Other information

Number of subgroups in this conjugacy class$15$
Möbius function$1$
Projective image$C_3:D_{15}$