Properties

Label 178920.a.2556.a1.a1
Order $ 2 \cdot 5 \cdot 7 $
Index $ 2^{2} \cdot 3^{2} \cdot 71 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{35}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Index: \(2556\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 71 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $\left[ \left(\begin{array}{rr} 14 & 62 \\ 14 & 57 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 37 & 63 \\ 30 & 30 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 51 & 65 \\ 58 & 28 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\PSL(2,71)$
Order: \(178920\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 \)
Exponent: \(89460\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,71)$, of order \(357840\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 71 \)
$\operatorname{Aut}(H)$ $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$W$$D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{35}$
Normal closure:$\PSL(2,71)$
Core:$C_1$
Minimal over-subgroups:$\PSL(2,71)$
Maximal under-subgroups:$C_{35}$$D_7$$D_5$

Other information

Number of subgroups in this conjugacy class$2556$
Möbius function$-1$
Projective image$\PSL(2,71)$