Subgroup ($H$) information
Description: | $C_{33}$ |
Order: | \(33\)\(\medspace = 3 \cdot 11 \) |
Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Exponent: | \(33\)\(\medspace = 3 \cdot 11 \) |
Generators: |
$b, d^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_3\times D_{11}\times \He_3$ |
Order: | \(1782\)\(\medspace = 2 \cdot 3^{4} \cdot 11 \) |
Exponent: | \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times \He_3$ |
Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.Q_8.C_{33}.C_{30}.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\operatorname{res}(S)$ | $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(42768\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 11 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $D_{11}\times \He_3$ |