Properties

Label 1782.64.54.b1
Order $ 3 \cdot 11 $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}$
Order: \(33\)\(\medspace = 3 \cdot 11 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $b, d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3\times D_{11}\times \He_3$
Order: \(1782\)\(\medspace = 2 \cdot 3^{4} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times \He_3$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_{33}.C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(42768\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$\He_3\times C_{33}$
Normalizer:$C_3\times D_{11}\times \He_3$
Complements:$C_2\times \He_3$
Minimal over-subgroups:$C_3\times C_{33}$$C_3\times C_{33}$$C_3\times D_{11}$
Maximal under-subgroups:$C_{11}$$C_3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$D_{11}\times \He_3$