Properties

Label 1782.64.18.c1
Order $ 3^{2} \cdot 11 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{33}$
Order: \(99\)\(\medspace = 3^{2} \cdot 11 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $a^{2}, d^{3}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3\times D_{11}\times \He_3$
Order: \(1782\)\(\medspace = 2 \cdot 3^{4} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_{33}.C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $C_{10}\times \GL(2,3)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_{10}\times D_6$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(594\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3^2\times C_{33}$
Normalizer:$D_{11}\times C_3^3$
Normal closure:$C_3^2\times C_{33}$
Core:$C_{33}$
Minimal over-subgroups:$C_3^2\times C_{33}$$C_3^2\times D_{11}$
Maximal under-subgroups:$C_{33}$$C_{33}$$C_3^2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$D_{11}\times \He_3$