Subgroup ($H$) information
Description: | $C_{590}$ |
Order: | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
Index: | \(3\) |
Exponent: | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
Generators: |
$a, b^{708}, b^{15}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,59$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
Description: | $S_3\times C_{295}$ |
Order: | \(1770\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 59 \) |
Exponent: | \(1770\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 59 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_6\times C_{116}$, of order \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \) |
$\operatorname{res}(S)$ | $C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{590}$ | ||
Normalizer: | $C_{590}$ | ||
Normal closure: | $S_3\times C_{295}$ | ||
Core: | $C_{295}$ | ||
Minimal over-subgroups: | $S_3\times C_{295}$ | ||
Maximal under-subgroups: | $C_{295}$ | $C_{118}$ | $C_{10}$ |
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $S_3$ |