Properties

Label 1770.4.3.a1.a1
Order $ 2 \cdot 5 \cdot 59 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{590}$
Order: \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \)
Index: \(3\)
Exponent: \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \)
Generators: $a, b^{708}, b^{15}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,59$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $S_3\times C_{295}$
Order: \(1770\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 59 \)
Exponent: \(1770\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 59 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{116}$, of order \(1392\)\(\medspace = 2^{4} \cdot 3 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
$\operatorname{res}(S)$$C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{590}$
Normalizer:$C_{590}$
Normal closure:$S_3\times C_{295}$
Core:$C_{295}$
Minimal over-subgroups:$S_3\times C_{295}$
Maximal under-subgroups:$C_{295}$$C_{118}$$C_{10}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$S_3$