Properties

Label 176400.a.6._.O
Order $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{140}.C_{210}$
Order: \(29400\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 307 \end{array}\right), \left(\begin{array}{rr} 307 & 0 \\ 0 & 48 \end{array}\right), \left(\begin{array}{rr} 91 & 0 \\ 0 & 384 \end{array}\right), \left(\begin{array}{rr} 256 & 0 \\ 0 & 79 \end{array}\right), \left(\begin{array}{rr} 64 & 0 \\ 0 & 125 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 370 & 0 \\ 0 & 33 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{420}.D_{210}$
Order: \(176400\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3870720\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{70}.C_6^2.C_2^6.C_2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed