Properties

Label 176400.a
Order \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$\card{Z(G)}$ 420
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \cdot 3^{2} \)
Perm deg. $38$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38), (2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37), (1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38) >;
 
Copy content gap:G := Group( (1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38), (2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37), (1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38)', '(2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37)', '(1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(66798095205065271706105589258719621828377411305165747097779040050581298378930267,176400)'); a = G.1; b = G.2; c = G.6;
 

Group information

Description:$C_{420}.D_{210}$
Order: \(176400\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(3870720\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 2, $C_5$ x 2, $C_7$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105 140 210 420
Elements 1 423 8 424 24 864 48 1752 872 2664 192 1776 384 2712 3936 1152 6192 4128 13536 6576 9216 14688 47808 57024 176400
Conjugacy classes   1 4 5 5 14 17 27 46 22 87 100 60 198 114 308 588 606 408 1788 804 4632 2376 13944 18576 44730
Divisions 1 4 3 4 4 9 5 12 8 15 14 10 18 12 40 26 52 30 76 38 100 54 294 202 1031

Minimal presentations

Permutation degree:$38$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b, c \mid a^{2}=b^{210}=c^{420}=[a,c]=[b,c]=1, b^{a}=b^{209}c^{270} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -3, -5, -7, -2, -2, -3, -5, -7, 2276361, 51, 1524482, 112, 6064323, 233, 2538004, 175, 206, 317, 538]); a,b,c := Explode([G.1, G.2, G.6]); AssignNames(~G, ["a", "b", "b2", "b6", "b30", "c", "c2", "c4", "c12", "c60"]);
 
Copy content gap:G := PcGroupCode(66798095205065271706105589258719621828377411305165747097779040050581298378930267,176400); a := G.1; b := G.2; c := G.6;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(66798095205065271706105589258719621828377411305165747097779040050581298378930267,176400)'); a = G.1; b = G.2; c = G.6;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(66798095205065271706105589258719621828377411305165747097779040050581298378930267,176400)'); a = G.1; b = G.2; c = G.6;
 
Permutation group:Degree $38$ $\langle(1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38), (2,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38), (2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37), (1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38) >;
 
Copy content gap:G := Group( (1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38), (2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37), (1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,5,3)(6,7,8)(19,20,22,24,25,23,21)(31,32,34,35)(33,36,37,38)', '(2,3)(4,5)(7,8)(20,21)(22,23)(24,25)(32,35)(33,37)', '(1,3,5,4,2)(6,8,7)(9,10,11,12,13,14,15)(16,17,18)(19,21,23,25,24,22,20)(26,27,28,29,30)(31,33)(32,36)(34,37)(35,38)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 211 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{421})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(421) | [[1, 0, 0, 4], [2, 0, 0, 211], [0, 1, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(421)^0, 0*Z(421) ], [ 0*Z(421), Z(421)^2 ]], [[ Z(421), 0*Z(421) ], [ 0*Z(421), Z(421)^419 ]], [[ 0*Z(421), Z(421)^0 ], [ Z(421)^0, 0*Z(421) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(421), 2, 2) G = MatrixGroup([MS([[1, 0], [0, 4]]), MS([[2, 0], [0, 211]]), MS([[0, 1], [1, 0]])])
 
Direct product: $C_3$ $\, \times\, $ $C_5$ $\, \times\, $ $C_7$ $\, \times\, $ $(D_{420}:C_2)$
Semidirect product: $C_{105}^2$ $\,\rtimes\,$ $(D_4:C_2)$ $C_{35}^2$ $\,\rtimes\,$ $(D_{12}:C_6)$ $C_7^2$ $\,\rtimes\,$ $(D_{60}:C_{30})$ $C_5^2$ $\,\rtimes\,$ $(D_{84}:C_{42})$ all 7
Trans. wreath product: not computed
Possibly split product: $D_{420}$ . $C_{210}$ $C_{420}$ . $D_{210}$ (2) $C_{210}^2$ . $C_2^2$ $(C_{70}\times C_{420})$ . $S_3$ all 355

Elements of the group are displayed as matrices in $\GL_{2}(\F_{421})$.

Homology

Abelianization: $C_{2}^{2} \times C_{210} \simeq C_{2}^{3} \times C_{3} \times C_{5} \times C_{7}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 472 normal subgroups (408 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_{420}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_{210}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $44730 \times 44730$ character table is not available for this group.

Rational character table

The $1031 \times 1031$ rational character table is not available for this group.