Properties

Label 176400.a.10._.B
Order $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}\times C_{420}$
Order: \(17640\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 312 & 0 \\ 0 & 112 \end{array}\right), \left(\begin{array}{rr} 376 & 0 \\ 0 & 199 \end{array}\right), \left(\begin{array}{rr} 370 & 0 \\ 0 & 33 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 307 & 0 \\ 0 & 347 \end{array}\right), \left(\begin{array}{rr} 376 & 0 \\ 0 & 318 \end{array}\right), \left(\begin{array}{rr} 311 & 0 \\ 0 & 310 \end{array}\right), \left(\begin{array}{rr} 122 & 0 \\ 0 & 176 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{420}.D_{210}$
Order: \(176400\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3870720\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $Q_8.(C_2\times C_6^2).C_2^4.\SO(3,7)$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed