Properties

Label 176400.a.1.a1.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{420}.D_{210}$
Order: \(176400\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Index: $1$
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 307 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 16 \end{array}\right), \left(\begin{array}{rr} 370 & 0 \\ 0 & 33 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 307 & 0 \\ 0 & 48 \end{array}\right), \left(\begin{array}{rr} 4 & 0 \\ 0 & 316 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 79 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 211 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian. Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_{420}.D_{210}$
Order: \(176400\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(3870720\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ Group of order \(3870720\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5 \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed