Properties

Label 1760.415.5.a1.a1
Order $ 2^{5} \cdot 11 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_{16}\times C_{22}$
Order: \(352\)\(\medspace = 2^{5} \cdot 11 \)
Index: \(5\)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $a, c^{44}, c^{11}, c^{8}, b^{5}, c^{66}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{11}:C_{10}\times Q_{16}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{44}).C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{10}\times C_2^3.C_2^4.C_2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(11\)
$W$$C_5\times D_4$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$C_{11}:C_{10}\times Q_{16}$
Complements:$C_5$
Minimal over-subgroups:$C_{11}:C_{10}\times Q_{16}$
Maximal under-subgroups:$Q_8\times C_{22}$$Q_8\times C_{22}$$C_2\times C_{88}$$C_{11}\times Q_{16}$$C_{11}\times Q_{16}$$C_{11}\times Q_{16}$$C_{11}\times Q_{16}$$C_2\times Q_{16}$

Other information

Möbius function$-1$
Projective image$C_{44}:C_{10}$