Properties

Label 1760.415.10.c1.d1
Order $ 2^{4} \cdot 11 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times Q_{16}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Generators: $ab^{5}, c^{8}, c^{66}, c^{11}, c^{44}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{11}:C_{10}\times Q_{16}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{44}).C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{40}:C_2^3$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\operatorname{res}(S)$$C_{40}:C_2^3$, of order \(320\)\(\medspace = 2^{6} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(22\)\(\medspace = 2 \cdot 11 \)
$W$$C_5\times D_4$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{22}$
Normalizer:$C_{11}:C_{10}\times Q_{16}$
Complements:$C_{10}$ $C_{10}$
Minimal over-subgroups:$C_{88}.C_{10}$$Q_{16}\times C_{22}$
Maximal under-subgroups:$Q_8\times C_{11}$$Q_8\times C_{11}$$C_{88}$$Q_{16}$
Autjugate subgroups:1760.415.10.c1.a11760.415.10.c1.b11760.415.10.c1.c1

Other information

Möbius function$1$
Projective image$C_2\times C_{44}:C_{10}$