Properties

Label 1760.40.10.a1.a1
Order $ 2^{4} \cdot 11 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{44}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $a^{10}, c^{11}, c^{2}, b, a^{20}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_2\times C_{22}):C_{40}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times F_{11}).C_2^4$
$\operatorname{Aut}(H)$ $C_2^3:S_4\times C_{10}$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times C_{10}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(44\)\(\medspace = 2^{2} \cdot 11 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{44}$
Normalizer:$(C_2\times C_{22}):C_{40}$
Minimal over-subgroups:$C_2\times C_{22}:C_{20}$$C_{44}.D_4$
Maximal under-subgroups:$C_2^2\times C_{22}$$C_2\times C_{44}$$C_2\times C_{44}$$C_2\times C_{44}$$C_2\times C_{44}$$C_2^2\times C_4$

Other information

Möbius function$1$
Projective image$C_2\times F_{11}$