Properties

Label 1760.303.11.a1.a1
Order $ 2^{5} \cdot 5 $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_{10}$
Order: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Index: \(11\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $a^{5}, c^{2}, c, a^{2}, b^{11}, b^{22}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_4\times D_{11}):C_{20}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_{10}\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_2^5.C_2^5$, of order \(1024\)\(\medspace = 2^{10} \)
$\operatorname{res}(S)$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_4^2:C_{10}$
Normal closure:$(C_4\times D_{11}):C_{20}$
Core:$C_4:C_4$
Minimal over-subgroups:$(C_4\times D_{11}):C_{20}$
Maximal under-subgroups:$C_2^2\times C_{20}$$C_2^2:C_{20}$$C_2^2:C_{20}$$C_4:C_{20}$$C_4:C_{20}$$C_4\times C_{20}$$C_4\times C_{20}$$C_4^2:C_2$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_2^2\times F_{11}$