Properties

Label 1760.25.22.b1.a1
Order $ 2^{4} \cdot 5 $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{40}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a^{10}, a^{4}, b^{22}, b^{11}, b^{44}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{88}:C_{20}$
Order: \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_2^2\times C_{10}\times D_4)$
$\operatorname{Aut}(H)$ $C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{40}$
Normalizer:$C_8:C_{20}$
Normal closure:$C_{22}:C_{40}$
Core:$C_2\times C_8$
Minimal over-subgroups:$C_{22}:C_{40}$$C_8:C_{20}$
Maximal under-subgroups:$C_2\times C_{20}$$C_{40}$$C_{40}$$C_2\times C_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$1$
Projective image$C_2\times F_{11}$