Properties

Label 176.33.11.a1.a1
Order $ 2^{4} $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times Q_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(11\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{11}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $Q_8\times D_{11}$
Order: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_4\times F_{11}$, of order \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times Q_8$
Normal closure:$Q_8\times D_{11}$
Core:$Q_8$
Minimal over-subgroups:$Q_8\times D_{11}$
Maximal under-subgroups:$Q_8$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$$Q_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$C_2\times D_{22}$