Properties

Label 17496.no.9.b1
Order $ 2^{3} \cdot 3^{5} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^3.S_3^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{3}f, de^{2}, cde^{6}, b^{3}f, a^{2}, e^{6}, d, e^{9}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^4.S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_3^4.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_3^4.C_3.C_2^4$
$W$$C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^3.S_3^2$
Normal closure:$C_3^4.S_3^3$
Core:$C_3^4.S_3$
Minimal over-subgroups:$C_2\times C_3^3.C_3^3.C_2^2$$C_3^4.C_3^2.C_2^3$
Maximal under-subgroups:$C_3^4.D_6$$C_3^3.C_6^2$$C_3^4.D_6$$C_3^3.S_3^2$$C_3^3.S_3^2$$C_3^3.S_3^2$$C_3^3.S_3^2$$C_{18}:C_6\times S_3$$C_3^4:C_2^3$$C_2\times C_3^2:D_{18}$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^4.S_3^3$