Properties

Label 1728.7359.6.e1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{6}, b^{18}c^{6}, b^{9}c^{3}, c^{4}, b^{12}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{18}$
Normalizer:$C_2^2.(D_6\times C_{36})$
Minimal over-subgroups:$(C_2\times C_{12}):C_{36}$$C_2^2.(C_{12}\times D_6)$
Maximal under-subgroups:$C_2\times C_6\times C_{12}$$C_6^2:C_4$$C_6^2:C_4$$C_6.C_4^2$$C_6.C_4^2$
Autjugate subgroups:1728.7359.6.e1.b1

Other information

Möbius function not computed
Projective image not computed