Properties

Label 1728.7359.24.b1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{18}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a^{2}, b^{12}, b^{18}c^{6}, c^{6}, b^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^2.(D_6\times C_{36})$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^5\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^2.(D_6\times C_{36})$
Normalizer:$C_2^2.(D_6\times C_{36})$
Minimal over-subgroups:$C_2\times C_6\times C_{18}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$$C_2^2\times C_{36}$
Maximal under-subgroups:$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2^2\times C_6$

Other information

Möbius function not computed
Projective image not computed