Properties

Label 1728.47887.432.a1
Order $ 2^{2} $
Index $ 2^{4} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(2\)
Generators: $\langle(10,12)(11,13), (10,11)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_6^2:D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3^3:C_2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $F_9:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_2^4:C_3.C_4.C_2^3\times S_3$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_6^2:D_6$
Normalizer:$D_6^2:D_6$
Complements:$S_3^3:C_2$
Minimal over-subgroups:$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3^3:C_2$