Properties

Label 1728.47887.216.m1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(2\)
Generators: $\langle(3,6)(4,5), (10,12)(11,13), (10,11)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $D_6^2:D_6$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_2^4:C_3.C_4.C_2^3\times S_3$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6144\)\(\medspace = 2^{11} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}:C_2^4$
Normalizer:$C_{12}:C_2^4$
Normal closure:$C_6:D_6$
Core:$C_2^2$
Minimal over-subgroups:$C_2^2\times C_6$$C_2\times D_6$$C_2^4$$C_2^4$$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-24$
Projective image$S_3^3:C_2$