Properties

Label 1728.47489.3.b1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_6\times D_{12}):C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(3,5)(4,6), (1,7,2,8)(3,4,5,6), (9,11,12)(10,14,13), (1,4,2,6)(3,8,5,7), (4,6)(7,8), (10,13,14), (1,2)(3,5)(4,6)(7,8), (4,7,6,8)(9,14)(10,11)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $(C_6\times D_4^2).C_2^3$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4:D_4\times D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_2^4:S_3$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$(C_6\times D_{12}):C_2^2$
Normal closure:$(Q_8\times C_3^2):S_4$
Core:$D_4:C_6^2$
Minimal over-subgroups:$(Q_8\times C_3^2):S_4$
Maximal under-subgroups:$D_4:C_6^2$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.D_4$$C_6^2.C_2^3$$C_3\times C_{12}.D_4$$C_3\times D_4:D_4$$(C_3\times D_4):D_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_2\times C_6):S_4$