Properties

Label 1728.47489.24.a1.a1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,5)(4,6), (9,11,12)(10,14,13), (4,6)(7,8), (10,13,14), (1,2)(3,5)(4,6)(7,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3)\times \GL(3,2)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6^2$
Normalizer:$(Q_8\times C_3^2):S_4$
Minimal over-subgroups:$C_6^2:C_6$$C_4:C_6^2$$C_6^2:C_2^2$
Maximal under-subgroups:$C_6^2$$C_6^2$$C_2^2\times C_6$$C_2^2\times C_6$$C_2^2\times C_6$

Other information

Möbius function$-12$
Projective image$(C_2\times C_6):S_4$