Properties

Label 1728.47365.1.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e^{4}, e^{3}, e^{6}, b^{3}, d^{3}, d^{2}, b^{2}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), and metabelian.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_6^2.C_6^2.C_2^6$
$\card{W}$\(864\)\(\medspace = 2^{5} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_8:S_3^3$
Complements:$C_1$
Maximal under-subgroups:$C_4.S_3^3$$D_{12}:S_3^2$$C_6.D_6^2$$C_6.D_6^2$$C_4\times S_3^3$$D_{12}\times S_3^2$$C_6.D_6^2$$C_4.S_3^3$$D_{12}:S_3^2$$C_6.D_6^2$$C_6.D_6^2$$C_4.D_6^2$$C_4.D_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed