Properties

Label 1728.47271.9.c1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:C_2^3$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e^{6}, e^{9}, b, c^{2}, c^{3}, d^{3}e^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^7.D_6^2$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \)
$\card{W}$\(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_{12}:C_2^3$
Normal closure:$C_{12}.D_6^2$
Core:$C_4\times D_6$
Minimal over-subgroups:$C_4.D_6^2$$C_4.D_6^2$
Maximal under-subgroups:$D_4\times D_6$$C_{12}:C_2^3$$D_4\times D_6$$C_{12}:C_2^3$$Q_8\times D_6$$D_4:D_6$$D_{12}:C_2^2$$C_6.C_2^4$$D_4:D_6$$D_{12}:C_2^2$$Q_8:D_6$$D_4:D_6$$D_4:C_2^3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed