Properties

Label 1728.47271.3.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_6^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e^{3}, e^{6}, b, d^{3}, e^{4}, d^{2}e^{6}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{12}.D_6^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\wr C_4:D_6$, of order \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^5.C_2^6.S_3^3.C_2$
$\card{W}$\(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4.D_6^2$
Normal closure:$C_{12}.D_6^2$
Core:$D_{12}:D_6$
Minimal over-subgroups:$C_{12}.D_6^2$
Maximal under-subgroups:$D_{12}:D_6$$C_6^2:D_4$$C_2.D_6^2$$C_6^2:D_4$$C_6^2.C_2^3$$C_6^2:Q_8$$D_{12}:D_6$$D_{12}:D_6$$D_{12}:D_6$$D_{12}:D_6$$D_{12}:D_6$$D_{12}:D_6$$C_{12}.C_2^4$$D_{12}:C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed