Properties

Label 1728.46940.4.b1.b1
Order $ 2^{4} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:S_3\times A_4$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 35 & 4 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 25 & 12 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 18 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 1 & 27 \\ 27 & 10 \end{array}\right), \left(\begin{array}{rr} 19 & 18 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_3^2:\GL(2,\mathbb{Z}/4)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4.D_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2:(D_6\times \GL(2,3))$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\operatorname{res}(S)$$A_4:D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_3^2:\GL(2,\mathbb{Z}/4)$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_6:D_6\times A_4$$C_3^2:\GL(2,\mathbb{Z}/4)$$C_3^2:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_2^2$$A_4\times D_6$$A_4\times D_6$$A_4\times D_6$$C_3^2:D_6$
Autjugate subgroups:1728.46940.4.b1.a1

Other information

Möbius function$2$
Projective image$C_2\times A_4:S_3^2$